
Motion Engine: Creating Wii-like Games for PC
Samuel Truman1

Abstract—Starting a few years ago, motion input devices which
allow the recognition of real-life, 3D gestures, began gaining
popularity and are offering unique gameplay opportunities.
While present on every modern living room console, their use
with PC has been confined to Virtual Reality. Motion Engine
is a game engine which allows fast prototyping of 3D video
games using the Nintendo Wii Remote as motion input device.
An easy-to-use Entity-Component-System saves a lot of time,
since developers don’t have to worry about complex low-level
matters like rendering, physics, memory, or asset management.
Motion Engine is well-documented, tested, and can be easily
extended. This paper discusses the benefits of Motion Engine
and its contribution to PC game development.

I. INTRODUCTION
In recent years, an exciting new trend can be seen in the

games industry. Traditionally, video games make use of input
methods such as mouse and keyboard, joysticks, or gamepads.
However, new means of input have joined those traditional
input devices. Innovations and novel means of play have been
thriving through the use of 3D motion input devices. This
development, however, has been mostly limited to consoles
and big-budget game studios with the resources to develop
for consoles such as the Wii. Console vendors often choose
not to publish their game engine and development tools to the
public but set up programs requiring developers to sign-up
and be approved in order to gain access to SDKs and other
development resources. This presents a significant obstacle to
indie developers and educational institutions to develop for
those platforms.

Motion Engine is a 3D game engine that allows rapid
prototyping of games which utilize the Nintendo Wii Remote
(Wiimote) as a 3D input device for PC (see fig. 1). Motion En-
gine is well-documented, tested, and easily extensible. A built-
in Entity-Component-System fosters clean and low-coupled
code in both engine and games. The engine is accompanied
by two demo games which demonstrate possible usages of
the features provided by the game engine and the Wiimote.
Dogfight (fig. 4) is a family-friendly fighter plane game in
which the player controls the plane by tilting the Wiimote.
The goal is to shoot as many balloons as possible. Dogfight
employs almost exclusively the Wiimote’s acceleration sensor
as input. In Target Training (fig. 3), the player’s reactions
are put on trial by challenging him or her to shoot targets
as soon as they appear. The player aims by pointing at the
PC screen utilizing the Wiimote’s optical sensor and the Wii
Sensor Bar. This demo is especially interesting to demonstrate
the Wiimote’s pointing capabilities, which are not supported
by most other motion input devices.

The Wiimote was chosen as the main input device due to
several properties appealing to both developers and consumers.

1 samuel.truman@stud-mail.uni-wuerzburg.de

The Wiimote costs only about e20 (including accessories)
[1] rendering it significantly cheaper than alternative motion
input devices. Still, the Wiimote’s infrared (IR) camera tracker
offers high resolution at a 100 Hz refresh rate and integrated
hardware object tracking [2]. The Wiimote exceeded the Wii’s
lifetime, being supported by its successor, the Wii U, and
heavily influenced the JoyCon, which is the controller for
Nintendo’s contemporary console, the Switch. However, the
Wiimote seems to still remain popular, as Just Dance 2020
was just announced for the Wii [1].

Fig. 1: Wii Remote Fig. 2: Nunchuk

To provide a foundation to this discussion, relevant related
work will be addressed in the next section, starting with the
introduction and comparison of different motion input devices.
Afterwards, Motion Engine is discussed in greater detail in
section III. In section IV, results, benefits, and challenges are
discussed. Finally, a brief outlook on potential future work is
provided in section V.

II. RELATED WORK

In 2006, Nintendo released their very successful console,
the Nintendo Wii. The Wii’s unique characteristic was the
focus on a newly introduced input device, the Wiimote. The
Wiimote most notably allows 3D motion recognition by means
of an acceleration sensor and pointing by means of an optical
sensor. A newer version also includes a gyroscope. In the
following years, similar motion input devices were developed
for every major console but the PC. In 2010, Sony released
the PlayStation Move controller, which allows motion sensing
and position tracking by means of an optical sensor called
PlayStation Camera and a magnetometer. PlayStation Move
can also be used for PlayStation VR (PS VR) and starts at
about e70 [3]. Only one month later Microsoft released the
Kinect for their Xbox console, which allows controller-less
motion sensing by utilizing optical sensors. Microsoft has
stopped manufacturing the Kinect meanwhile [4]. For PC,
no standard motion controller is available. Motion controllers
are only slowly gaining popularity with Virtual Reality (VR)
becoming mainstream. The two by far most popular VR
systems for PC, the HTC Vive and Oculus Rift, both come
with their own set of motion controllers. These controllers,

mailto:samuel.truman@stud-mail.uni-wuerzburg.de


however, are - like VR hardware in general - quite expensive
and generally not utilized in non-VR games.

While there are obviously plenty of games for the Wii
extensively utilizing the Wiimote, non-Wii games utilizing
the Wiimote are effectively non-existent. The long list of Wii
games covers all genres. Sports games seem to be especially
popular. Most notably Wii Sports [2], which is considered one
of the most successful video games in history with more than
80 million copies sold [5]. Although many Wii games are
highly optimized, they are limited by the hardware capabilities
of the 2006 released Wii.

The most popular modern-day game engines generally don’t
support the Wiimote as input device out of the box. A Wiimote
plugin for Unreal Engine seems to have existed at some point,
however, it doesn’t appear to work on contemporary Unreal
versions and was removed from the plugin explorer. For Unity,
there are two plugins: Unity-Wiimote [6] and WiiBuddy [7].
The former seems to have some technical difficulties which
could not be fixed for years, esp. regarding the Nunchuk
extension. The latter has generally good reviews and costs only
e22.33. Some reviews, however, suggest usability issues.

III. METHODOLOGY

In this section, Motion Engine is discussed in greater
detail including development, use-cases, and benefits. The
development was generally driven by the principles ”per-
formance over memory” and ”usability over performance”.
This means, speed-memory trade-offs were mostly decided in
favor of speed at costs of higher memory usage, and simple,
maintainable code was favored over cryptic yet fast code.
Motion Engine can be used to build games for Windows
using OpenGL 4.2 and modern C++17. The target compiler
is MSVC 15 (2017) x64, but MSVC 16 (2019) and gcc will
work, too. MinGW is currently not supported anymore due
to a file size limitation causing problems with a third-party
library in debug mode. Supporting additional target platforms
in the future should be possible without much effort. Motion
Engine can already be compiled and used to run unit tests
under Linux, e.g. in a Continuous Integration (CI) pipeline.
Such a CI pipeline was used extensively throughout Motion
Engine’s development and unit tests were added to ensure
functionalities on different compilers and permit regression
testing. During configuration in CMake, unit tests and a test
project can be enabled or disabled.

A. Wiimote

Both the example games included (Dogfight and Target
Training) highlight the use of the Wiimote, Motion Engine’s
primary input device. The classic Wiimote and refined version
are both supported. Although not used by the example games,
the Nunchuk (fig. 2) and Motion Plus extension - which adds
a gyroscope - are equally supported. Motion Engine automat-
ically disables Wiimote functionalities which are not in use in
order to minimize data transfer and increase battery lifetime.
For example, the IR sensor is disabled until pointing input is
required. In order to use the Wiimote as a pointing device, a
Wii Sensor Bar is required. Either the official one can be used

or a non-official USB variant which costs about e8 can be
used. There are also slightly more expensive wireless sensor
bars. To connect to the Wiimote, the PC running the game
is required to have Bluetooth. For PCs without Bluetooth, a
USB Bluetooth dongle can be used. Bluetooth dongles start at
about e5. Apart from the Wiimote, Motion Engine provides
full support for mouse, keyboard, and contemporary Xbox and
PlayStation controllers. Another important engine feature is
the Entity-Component-System which is introduced next.

Fig. 3: Point with the Wiimote to shoot targets in Target
Training

B. Entity-Component-System

The Entity-Component-System (ECS) is used throughout
the engine and has a significant impact on engine and game
code alike. The basic idea behind the ECS is to favor compo-
sition over inheritance and separate data from logic. Entities
are essentially just an ID representing an object in the game
world. A component is a set of data describing a specific
aspect of the entity. For example, a Transform component
stores data regarding the entities position, orientation, and
scale in the game world. Systems use the data specified by
components to achieve a specific task - in general periodically.
For example, the physics system uses all physics data to update
the physics simulation. Most major sub-engines like Rendering
and Audio are systems. This approach is highly extensible,
as new components and systems can be easily added without
leading to deep inheritance hierarchies or high-coupled code.
Also, this approach is highly adaptable, as switching e.g. to a
different renderer would only require replacing the concerned
system, without the need to change any other engine or game
code. More on how the ECS can be utilized to quickly create
games is explained in section III-D. A detailed explanation of
how to use the ECS, as well as its implementation, can be
found in the manual and API documentation.

C. Additional Features

This section briefly highlights some of the features which
are slightly less obvious and might not be recognized just by
looking at the example games. Nevertheless, they contribute
to the workflow and game experience. A scene consists of a
set of entities with their attached components, as well as a few
special objects such as the main camera or skybox. A scene



with its contents is serializable and can be saved to and loaded
from JSON. Alternatively, a binary format based on CBOR can
be used, which yields significantly smaller file sizes. Motion
Engine also offers a set of post-processing effects which can
be used to visually enhance games. A Sequence of several
post-processing effects are for example used in Dogfight, the
moment the plane is spawned. Motion Engine’s standard ren-
dering system uses Blinn-Phong shading and supports point-
, spot-, and directional lights. The specular reflection of the
sun can be seen e.g. on the plane in Dogfight, depending on
the plane’s position relative to the sun. Rendering techniques
such as blending, normal mapping, anti-aliasing (MSAA), and
gamma correction are supported and used in both example
games. Every major 3D model format can be imported in
Motion Engine, including FBX, OBJ, DAE, and blend. Most of
the important image formats, including PSD, and several audio
formats can be used. To draw UI, sprite and text rendering,
along with dear imgui widgets can be used.

Fig. 4: Control a fighter plane with the Wiimote in Dogfight

D. Workflow

To create games using Motion Engine, a new CMake project
must be created. Motion Engine needs to be downloaded and
linked. Then, a game class can be inherited from the engine
class and executed in the main function. The class interface
provides callbacks which can be used e.g. to run code relevant
to all scenes. Scenes can be registered to the scene manager
or loaded from files. A scene can be filled with entities
using the entity manager. Each entity represents an object in
the game world. To change an entity’s behavior, components
can be added to the entity. Motion Engines provides several
components, e.g. different lights, colliders, UI elements, and
of course transforms, rigid bodies, and models. Furthermore,
one can add own components or logic to entities. These
components need to implement the Behavior interface. Adding
behaviors to entities via lambdas is also possible. This is
especially useful for quick prototyping. More on how to get
started with Motion Engine including example code can be
found in the quick start guide and the manual.

IV. CONCLUSION

Motion Engine is a well-documented, easy-to-use game
engine which allows fast prototyping of 3D video games.

Special thought was given to support creating applications
which make use of the Wiimote and Nunchuk as an input
device for gestures and pointing. Developers using Motion
Engine don’t have to worry about writing OpenGL rendering
code or other low-level systems like memory or asset manage-
ment. Engineers can conveniently extend the engine by adding
new components and systems to achieve any conceivable
task. The manual contains sections dedicated to engineers
explaining how. Non-expert C++ developers should be able
to build a simple prototype in just a few hours. Currently,
Motion Engine has a 42.3% test coverage. This, however,
includes OpenGL rendering code, which is generally difficult
to unit test. Excluding this code in coverage reports would
yield a significantly higher coverage but defeat the purpose
of coverage reports. With VSync disabled, Dogfight has an
average of about 120 frames per second (FPS) and Target
Training about 150 FPS. With VSync enabled, both games
have a stable framerate of about 60 FPS. These tests were
conducted on contemporary gaming hardware (Nvidia GTX
1080). Utilizing a few rendering tricks, the framerate could be
improved significantly in the future.

V. FUTURE WORK
This section briefly mentions how Motion Engine could

be improved in the future. Several rendering techniques were
initially implemented, but as they had no use for the example
games, support was dropped. Re-adding them, however, could
be done with minimal effort. These techniques include SSAO,
instanced rendering, parallax mapping, HDR, and (omnidirec-
tional) shadow mapping. An editor could be added to speed
up the engine workflow as well as make the engine more
accessible to designers. Based on the UI sprite rendering
system, a dedicated 2D mode could be provided. The main yet
missing requirement for such a 2D mode is probably a physics
system focused on 2D games. The capabilities of Nintendo’s
latest motion controller, the JoyCon, could also be explored
in the future. Additionally, machine learning algorithms could
be utilized to foster smarter gesture recognition. Finally, a
binary asset format could be introduced, as required by many
providers of free assets on the Internet.

LUDOGRAPHY

[1] Ubisoft, “Just dance 2020,” 2019.
[2] Nintendo, “Wii sports,” 2006.

REFERENCES

[1] Amazon, “Wii Motion Plus Controller,”
https://amazon.de/dp/B07CPQGRB8/.

[2] J. C. Lee, “Hacking the Nintendo Wii Remote,” IEEE Pervasive Com-
puting, vol. 7, no. 3, pp. 39–45, Jul. 2008.

[3] Amazon, “PlayStation Move Motion-Controller,”
https://www.amazon.de/PlayStation-Move-Motion-Controller-Single-
Pack/dp/B004V7K0IK.

[4] M. Wilson and M. Wilson, “Exclusive: Microsoft Has Stopped Manufac-
turing The Kinect,” https://www.fastcompany.com/90147868/exclusive-
microsoft-has-stopped-manufacturing-the-kinect, Oct. 2017.

[5] “IR Information : Financial Data - Top Selling Title Sales Units - Wii
Software,” http://www.nintendo.co.jp/ir/en/finance/software/wiiu.html.

[6] A. Biagioli, “An easy to use interface between Unity3D / C# and a Wii
Remote controller.: Flafla2/Unity-Wiimote,” Jul. 2019.

[7] “WiiBuddy - Asset Store,” https://assetstore.unity.com/packages/tools/input-
management/wiibuddy-4929.


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Wiimote
	Entity-Component-System
	Additional Features
	Workflow

	CONCLUSION
	FUTURE WORK
	Ludography
	References

